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Field and Network Analysis of Interacting
Step Discontinuities in Planar

Dielectric Waveguides

TIJLLIO E. ROZZI, SEN1OR MEMBER, IEEE, AND GERARD H. IN’T VELD

A ~bstract—Planm dielectric waveguides play an important role in ekc-

troqptics and at millimeter frequencies. In many laser conf@rations and

integrated opticaf components, grooves are etched in the planar surface or

overlays are depmsited on it. The step is an idealization of such a

discontinuity. Step dfscontfnrdties are seldom isolated. Mostly a cascade is

employed. The aim of this paper is to derive, from a rigorous field analysis

an accurate finite network description for such cascades, either finite or

infiiite, periodic or aperiodiq which takes account also of the continuous

spectrum. Nmnerieal examples ure given.

L INTRODUCTION

T

~ HF. ANALYSIS of discontirmities in open dielectric

waveguides is still in its infancy, and very few tech-

niques are known [1]. In this paper we study an important

class of discontinuities, namely, the cascade of steps in a

planar dielectric waveguide, such as shown in Fig. 1. This

is a basic configuration occurring in passive and active

components for integrated optics and optical communica-

tions, such as the grating coupler, the transformer/eche-

lon, and the distributed feedback laser. Corrugated dielec-

tric waveguides are also used for millimeter waves and as
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Fig. 1. Cascade of steps in a planar dielectric waveguide. (al Cascade.,
of symmetric steps. (b) Cascade of asymmetric steps.

microwave antenna feeds. Various ,approxinnations have

been introduced for dealing with small discontinuities

between monomode guides (see, for instance, [1]-[4]). The

infinite periodic case has been treated extensively and

rigorously (see, for instance, [5] for a most comprehensive
list of references (287), as well as [6]). The problem of an

isolated, large step between two multimode waveguiides

has been treated rigorously [7]. The general problem c~f

arbitrarily large, aperiodic interacting steps is unsolved up

to date. However, the optimum performance of various
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components is dependent, for instance, upon optimizing

the spacing between discontinuities and minimizing (or

maximizing) radiation at certain angles. It is, therefore,

worthwhile to develop an accurate analysis of general

validity. Fig. 1 illustrates the basic geometry. The struc-

ture is uniform in the y direction, not shown. Material

losses are not considered in this context, although this is

not an essential restriction.
An open dielectric waveguide allows, besides a finite

number of surface waves, a continuum of modes. The

modes within a finite range of the continuum are propa-

gating; the rest represent localized energy storage (reactive

modes). A surface wave incident from the left is scattered

by the step S1 in all the surface modes allowed at either

side of Sl as well as in the modes of the continuous

spectrum. After propagating up to Sz, the surface waves

and the propagating part of the continuous spectrum are

again scattered by the second step, so that interference

between S1 and Sz takes place. The reactive part of the

continuous spectrum, being nonpropagating, is virtually

localized to the neighborhood of the discontinuity. The

problem involves two levels of complexity, depending on

whether we disregard or consider interaction via propagat-

ing continuous modes. In the former case, the field prob-

lem of a single step is first solved by means of the

approach of [i’]. This analysis results in a multiport

network which describes how the junction is seen by the

surface waves: a port corresponds to each surface wave at

each side of the step. The cascade of interacting steps is

then described by a model consisting of discrete multi-

ports connected by transmission lines: one pair of ports

and one transmission line per surface wave. This is analo-

gous to the representation of interacting discontinuities in

closed waveguides [8]. A more complex situation arises for

cascaded discontinuities in weakly guiding structures, but

also for a large double-step discontinuity, where the prop-

agating continuous modes excited at one step “see” the

adjacent step, and it is impossible to ignore their interac-

tion. The picture of the step as a discrete multiport is no

longer adequate. A discontinuity is now intrinsically a

“generalized multiport” (GM), having a finite number of

discrete ports (the surface waves), plus a continuum of

ports (the continuous spectrum).

Although the GM retains many of the formal properties

of an ordinary multiport, it is no longer amenable to the

methods of finite network analysis and, as such, is no

longer useful. This difficulty is surmounted by giving up

the simple model of individual-mode propagation along

uncoupled, parallel transmission lines between successive

discontinuities.

Introducing a new representation of each length of

waveguide between successive discontinuities, including

the discontinuities at either end, reduces it to a discrete

2N-port network. All the N pairs of ports are mutually

coupled, but the above model is now amenable to

ordinary network analysis. The equivalence of the

network approach to a Ritz-Galerkin variational solution

will presently become apparent.
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Fig. 2. (a) Double-step discontinuity in a closed homogeneous
guide. (b) Network representation.

wave-

In the following, we will consider slab waveguides ex-

cited by even TE waves. This particularization consider-

ably simplifies the modal spectrum with no loss of gener-

ality to the principles involved. The necessary modifica-

tions for the general multilayer waveguide and the TM

case are described elsewhere [9], [10].

II. INTEGRAL EQUATIONS FOR THE DOUBLE-STEP

DISCONTINUITY

Fig. 2(a) shows a double-step discontinuity in a closed

homogeneous waveguide. The field problem is trans-

formed into the network problem of Fig. 2(b). Each step is

represented by a multiport connected to the other by a

finite and generally small number of transmission lines,

one for each mode, either propagating or cutoff, which

causes nonnegligible interaction (which we define, as in

[8], an “accessible” mode). If enough modes are consid-

ered accessible, the field problem of a step can be treated

in isolation. Hence the step and the intervening length of

waveguide are the “building blocks” of the cascade.

Consider now the case of a double-step discontinuity in

the slab waveguide of Fig. 3(a) (groove) or of its counter-

part of Fig. 3(b) (rib). As long as interaction takes place

mainly via the surface waves, as in Fig. 3(b) with nl

considerably larger than nz, so that we can disregard

interaction via the continuous spectrum, the representa-

tion of Fig. 2(b) still applies. For Fig. 3(a), however, with

n 12 nz, considerable radiation takes place at the step, and
the familiar representation no longer holds. Propagating

continuous modes, while being accessible, cannot be mod-
eled by means of a finite number of transmission lines. In

order to proceed, we must first retreat one step and

reformulate the field problem.

Consider the situation where slabs 1 and 3 of Fig. 3(a)

are semi-infinite. The relationship between the transverse

(y-directed) electric field E and the transverse
rected) magnetic field H at z = 0- is [7]

E(x, O) = – f%l(X,X’) [ – H(x’,0) ] dx’
o

=–2,. [– H(X, O):

where

(x-di-

(1)

(2)
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Fig. 3. Double-step discontinuity in a planar dielectric waveguide. (a)
Groove. (b) Rib.

is the Green’s impedance function of the semi-infinite slab

l.cp,. . . q]fil are the modal fields of the ii, surface waves

with characteristic impedances ZO1”“ “ zo~,; rp(x, p) repre-

sents a component of the continuum with characteristic

impedance Zo(p). Similarly, at z = L, we have

E(x,L)-~z - [ – H(x,L) ] (3)

where

Z’(lc,x’) ‘= 3 Z:n+.(x)+n(x’) + ~mzo(fw(x,d+(x’,d dp.
~=1

(4)

The various quantities occurring in (4) resemble those

occurring in (2). In particular, Zo(p) is the same for both

slabs. If E k identified with an abstract “voltage” and

– H with an abstract “current,” then ~l,z are driving-

point impedance operators of the semi-infinite slabs 1,3.

We now need a link between the fields at z = O and z = L,

which represents the effect of the finite length of slab

waveguid e between the steps. Let @k(x) (1 < k <~) denote

the surface waves in region 2, having propagation con-

stants r~ and characteristic impedances (TE modes)

and let rp(x, p) denote a component of the continuous

spectrum with propagation constant r(p) and characteris-

tic impedance

jwpo qlo

z!(p) = — = ——

‘(p) @= ‘ ‘orp<n’ko
jupo

‘F-= ‘ ‘orp’n’kw
(6)

p is the transverse wavenumber in the air region, so that

p’+ ~ 2==nfk:, (kO = O/ c). When a magnetic wall is placed

at z = L (H(x, L) = O), the transverse electric field E(x, O)

excited by I-I(x, O) is

E(X,O)= 2,,. [– H(X,O)]

cm c
. J {2dx’ Zok coth (r~,c)~~(x)o~(x’)

o k=l

+ Jm~’ ZO(P) c~th (r(P) L)@(A P)@(x’, P)
o }

Fig. 4. Abstract network representation of the integral equations for
the double step.

This expression is the operator form of the driving point

impedance of an open-circuit stub. Moreover, under the

same boundary conditions, we have

E(x, O)= – .f,2.[ – H(Jc,L)] (8)1

where ~12 is derived from (7) by replacing the coth

function by csch. When a magnetic wall is pktced at z:= O

and E(x, O) is set equal to zero, we have by symmetry

E(x,L)= – ~,l. [ – H(x,L)] (9;1

and by reciprocity

E(x,L) = ~12. [ – H(x,O)]. ( 10)

The above equations (7)–(10) can be combined in a

“two-port” Green’s open-circuit impedance operator for

the length of waveguide O<z < L:

Continuity of the transverse fields at z = O, L :yields two

coupled integral equations for H(x, O),H(x, L) which cclm -

pletely describe the problem.

Their abstract network representation is shown in Fig.

4, where the positive current convention is that from left

to right. From this figure, the relationships between the

field incident from the left at z = O

ii,

E,(x, O)= ~ a.q.(x) (12a)
~=1

and that incident from the right at z ❑= L

E2(x, L)= ~ ai,+~sJ~(x) (l;Zb)
~=1

and the total fields at z = O, L are found to be

E(X,0)=2E,(X,0)– 2,. [ - H(x, o)] (13a)

E(x, L)=2E2(x, L)+ ~2. [ -- H(x, L)]. (13b)

Hence, from (11) and (13), the integral equations describ-

1The integmnd has no branch line singula nties but only poles for
~(p) L= mfr. Tttese are avoided by means of ,small indentations on the

upper half-plane (“small” losses). One such po Ie contributes a term

tm(upJpm)(7r/L)@ (x, pm)@(x’, pm)

.[-H(X’,0)1. (7). . to the Green’s function.
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ing the scattering properties of the double step are

(14)

For the double step in a closed homogeneous waveguide,

decoupling of the integral equations takes place essentially

by replacing the off-diagonal terms of the matrix in (14)

by independent sources, This approach is feasible in as

much as interaction between adjacent steps can be de-

scribed effectively by means of a few parallel uncoupled

discrete transmission lines. Hence, the network repre-

sentation of Fig. 2(b) results.

In the present situation, this is no longer possible due to

the propagating continuous modes. We must consider,

therefore, the whole length of waveguide between two

successive steps, including the steps, as the building block

of the cascade.

III. TRANSFORMER EMBEDDING AND FINITE

NETWORK MPRESENTATION

The abstract representation of the double step given in

Fig. 4 is not an actual equivalent network, amenable to

ordinary network analysis, but it is our aim to derive such

a network. The integral equation for the single step can be

reduced to a finite matrix equation by means of a discrete

sequence of functions (not necessarily orthonormal, but

belonging to a complete set) truncated after N terms. This

amounts in fact to the Ritz-Galerkin variational ap-

proach [11],

For the symmetric TE case, for instance, an appropriate

orthonormal “basis” of functions for representing the slab

modes is given by

{
cm(x) = ----!-

% ()exp (—x/2xo)L_1 3 , *=l. ..~
Xo }

(15)

where L denotes the Laguerre polynomial and X. is a scale

factor chosen so as to optimize the convergence of the

representation for any finite truncation N [7]. Introducing

such a sequence at z = O, we expand the slab modes in

region 1 as2

%(x) = ~:, ~mnfm(x) (16a)

ql(x, p) = ~ PJ2JX) (16b)
~=1

where

2As N+ co, (16a) converges “in the mean,” and ( 16b) onty in a
distributional sense. This relates to the delta function normalization of
the continuous modes and to the finiteness of energy, which is defined
under an integral sign. As apparent from (18), classical convergence of
(16b) is not required.

I I

jw’m~’z,,,,, L +

Zo, 4

g%

-:zafi) ., ‘
% - f

Zonl -
? - E?,

4 Z’oii, ,?12

2%;0. ? T zOK T’ 4+ -.2a61+n2 I,N A k - 12N

i .q~

E,N - f t - %.

~ + zip ~

I –1

Fig. 5. Finite network representation of the double step.

~m,-~m(p) = (~m,@ = ~w~m(X)~(X,~) dx. (17b)

Using (15) as a basis, (2) becomes3

z,= ~ zonPnP: + fm dPzo(P)p(P)P’(P) (18)
~=1 o

where Pn is the vector with components given by (17a).

We can combine the latter so as to define a rectangular

(fil x N) transformer matrix

(1’,1 ‘.. P
T:=

P,fi,
)

P:,’fi, “
(19). . .

The finite sum in (18) can be written as

T:. Zod” Td (20)

where ~od= diag (zol,. . . . zo~,), which is the familiar ex-

pression of a transformer embedding of an impedance

matrix (see Fig. 5).

N x 1 transformer

and write (18) as

In analogous fashi&, we introduce the

Tp= (PIP. . . P~P)’ (21)

where the dot product must be understood in the sense

indicated in (18), partly as an ordinary matrix multiplica-

tion, partly as an integral over the product of scalar

functions.

The resulting N X N-matrix (18) can be interpreted as

the impedance of an ordinary N-port, which approximates

the field problem in the Ritz-Galerkin sense and is amen-
able to ordinary network analysis. The projections of the

surface-wave modes of region 2 onto the basis (15) are

given by

A~~=(i2~,@~) (23a)

where O < k <~, while those of the modes of the con-

tinuum are given by

A~P=(~~,@P). (23b)

Moreover, let us introduce at z = L another finite

3The superscript t denotes transposition.
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sequence, similar to (15),

(

pm(x) . L

G ()
exp(–x/2X)L~_l ~ ;m=l. .oN

I 1 /J+&’j$j :~jijj:<g$
(24) ; ‘i “2,.0 z~ i!3 ZL., z~

where X is a scale constant.

The projections of the modes of slabs 2 and 3 on the
Fig. 6. (a) Cascade of multiple steps. (b) [ts finite lnefwork rePre..

sentation.

latter basis are given by

Zmk= (Em,q) Ykl= ilk, – ako,y(z~ U:Z,- ‘u,

where

d~[=lifk=l =Oifk#l

l<k,l<fi1+fi2
(25)

ok = &, as k$iil

which introduce two ideal transformers with ratio : k<iil
matrices

‘Ok
Zok = ,

‘O, k – ii, : k>iil
T’=(P1. . .PE,PPA1 . .AKAP) (26a)

( ,“”

Pk : k,g~l
p= ~ . ~K~pR1 . “ sRi,Rp). (26b) Uk =

Pk -~, : k:>cl.

Using (l?), (23), (25), and (26), the integral equation (14)
for the double step becomes the matrix equation IV. CASCADE OF STEP DISCONTINUITIES

(~d=zs(:;)(27)
Having obtained the building blocks, i.e., the double-

step discontinuity, we are now in a position to consider

where frc)m (12) and (16a), we have
the cascade of steps such as shown in Fig. 6(a).

Within each uniform section, E(x, z) and -- H(x, z) can

be expressed at any point z as combinations of the surface
Elm= ~ a~Pmn (28a) Waves and of the continuous spectrum of the section in

n=l
question. The total transverse fields at z, and z,+ 1 are

,~,1

‘2m= E aii, +nRmn. (28b)
related by

n=l ‘

11,l,Z corresponds to – H(x, O), – H(x, L):

(

~ =! z~+z~, –Z,*

)

(-:%J)=(-Z -2W:::21)1

‘2 – Z;2 Z2+Z*,
(29) (33)

a

where Z1 is defined in (18) and
where Zfi), ~f~, etc., are the two-port impedance opera-

tors for each section, as given by (11)1.

Z,. := T’ Introducing the ideal ~ransfo~rners ~ at z,, we obtain
—11 –

.diag (Zol coth I’IL,. .
the discrete equivalent network of Fig. 6(b).

, ZOk coth rkL, Zoo coth rPL). T Continuity of the transverse fields

(30)

the dot product being understood in the sense of (18). An

analogous definition holds for Zzz with T replaced by T.
Moreover, we have

Z}2= T’

.diag (201 csch 171L,. . . . Zo~ csch I’kL, 200 csch I’PL) ~

(31)

The network interpretation of (29) is shown in Fig. 5.

The normalized scattering matrix of the double step, as

seen by the surface waves incident at either side, can be

derived from the above figure. By definition, its element

~~1 is given by the voltage wave appearing at port k for

unit incidence at port 1. This expression is, in fact, form-

ally the same as for the single step [7]

E(x,z,-)= E(x,zl+)

H(x, z,-)= H(x, z: ) (34)

is translated into continuity of voltages and currents at the

reference plane S,. It should be emphasized that interac-

tion via the propagating continuous spectrum between

nonadjacent discontinuities is built into the model, as
E(x, z,) represents the total transverse field at z,. ~~e

analysis of the cascade is most conveniently carried out
by cascade multiplication of the transfer matrices of th~

individual discrete networks N1 . . . NL. The transfer

matrix relates voltages and currents at the left-hand-sidlt

ports to those at the right-hand side. If we denote by

(Zl, –Z,2
– Z{* Z22) (35)
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Fig. 7. (a) Unit cell of the periodic cascade. (b) Us finite network
representation.

the 2N-impedance matrix of a discrete 2N-port (with the

sign convention of Fig. 6(b)), its transfer matrix is given

by

[

2,1.(2;2)-1 ; –[z,,. (zf2)-’”z22–z,2] 1M=------ ; ---------- ---- (36)

(2:2)-’ [ - (2[2)- ‘.222

The inverse transformation, from ill to Z, is easily re-

covered. After the overall impedance matrix of the

cascade has been obtained by network analysis, its scatter-

ing matrix, as seen by the fil surface waves of the semi-inf-

inite guide to the left of Sl and iii surface waves to the

right of S=, is given by (32). An important particular case

arises when the cascade is infinite and periodic.

The unit cell of the periodic structure is shown in Fig.

7(a) and its finite, discrete equivalent network in Fig. 7(b).

The relationship between voltages and currents at xl and

A’is

The periodicity condition requires, however,

(T’’)=e-r’(;)

(37)

(38)

where L is the length of the period and r is the propaga-

tion constant on the periodic structure. From (37) and

(38) follows the (approximate) eigenvalue equation for the

periodic structure:

‘~’”m=e-rL(T) (39)

Reciprocity implies that if r is an eigenvalue, so is – r.

The transverse electric and magnetic fields, obtained from

the corresponding independent eigenvectors, are

– w(x)= sl:g(x) (J)=l.. . N). (40b)
n—1

If so required, the latter are easily expressed in terms of

the spectrum of either waveguide of Fig. 7(a).

VII. EXAMPLES

The theory will not be illustrated by means of a few

examples. These refer to slab structures excited by even

TE waves. The required expressions of the mode func-

10

8 -

6

L -
n2k Od= 2

D=2d rl, =22L

.Ikod. 311 n,.3L

[ r.]

2 -
[r, ]

5 10.
I/d —

Fig. 8. Reflection and transmission coefficients of a symmetric double
step versus relative separation.

tions, the Green’s functions, and their discrete representa-

tion are given in [7]. Mathematical details on the com-

putation of the integrals over the continuum as well as on

the convergence of the discrete representation are also

provided. Similar information for the TM case can be

found in [9] and for the general multilayer case in [10].

A. Symmetric Double Step

The first example of Fig. 8 is a rib of AlGaAs in air

excited by a surface wave incident from the left. For the

given values of the parameters, only one surface wave can

propagate in each section. The computation was carried

out as described in Section IV using the discrete basis

(15), truncated after three terms (N= 3). Inclusion of

additional terms produced only a very slight change in the

characteristics.
In the figure the reflection coefficient r and transmiss-

ion coefficient T12 are plotted versus the relative spacing

1/d. Radiation losses for this configuration are virtually

negligible, and the rib behaves almost like a resonator in

closed waveguide. The above behavior contrasts with that

of the second case of Fig. 8, namely an air gap between

two collinear semi-infinite slabs. This is the degenerate

case of the rib for D = O. The surface wave in the mid-re-

gion disappears, while the continuous spectrum of the slab

becomes that of an homogeneous air region.

Radiation losses here are obviously high, and there is a

fair amount of coupling between the slabs, which de-

creases only slowly with increasing spacing. The reflection
coefficient, on the other hand, approaches that of a single

semi-infinite slab radiating in air, as is to be expected.

B. The Quarter-Wave Transformer

Fig. 9 shows the counterpart of a classical configuration

in microwave techniques, namely, a ten-to-one quarter-

wave transformer. For the given values of the parameters,

all three sections are monomode. Furthermore, the electri-

cal length of the midsection is a quarter-wavelength at a

point within the region of interest, and its thickness is

chosen so that the impedance matching condition is satis-

fied. An obvious and simple approximation for this struc-
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Fif;. 9. The(not so)ideal quarter-wave transfortner.

TA.BLE I
(CONVERGBNCIZ OF THE PROPAGATION CONSTANT OF THE INFINITE

PERIODIC Smwc-mnw OF FIG. 7

——

~2~0d’l; D/d=2; 11/d. 12/d=l; (n~-n?j)AkOd=2;

N Re( P:) In(~l)

1 2.185 0

3 2.242 -0.125

4 2.169 -o.17b

6 2.151 -0.155

7 2.129 -0.173

e 2.130 -9.170
—.

ture is obtained by treating it as a cascade of lossless

transmission lines, disregarding mode conversion at the

steps. Transmission and reflection coefficients in this ap-

proxtimat [on (T approx and r ,Pprox) are contrasted in the

figure with the result of a fourth-order variational solu-

tion, carried out as described in Section IV, taking

account of losses and of interaction. The behavior of the

reflection coefficient from the left, r,, is due to the fact

that the surface wave is less well guided in the thin slab.

This effect is felt particularly at short spacings. The effect

of losses on the reflection minima and the transmission

coefficient is also evident.

C, Jnfini,’e Periodic Structure

The unit cell of an infinite periodic structure is shown

in Fig. 7(a). Table I shows the convergence of the propa-

gation constant ~1 of the first mode of such a periodic

structure with increasing order of the discrete representa-

tion.

For the sake of comparison, the propagation constants

Bl, Bz of the two surface waves of the thicker slab section

and b of the thinner section are also given.

From simple transmission-line considerations, an esti-

mate of the propagation constant, strictly speaking only

valid for monornode dab sections, is

(41)

Hence, the similarity between Re( /31) and 3!1 is harclly

surprising. owing to the multimode character of thicker

slabs, however, the general behavior c~f the eigenvalues is

rather complicated.

VIII. CO1-4CL~SIOh~S

In conclusion, a general analysis technique has been

outlined foIr cascaded step discontinuities in dielectric

waveguides. me key point is transforming the field prob-

lem, which involves a continuous as well as a discrets

spectrum, into a finite discrete network problem by meam

of an appropriate discrete representation. Tkw discrete

network is then amenable to standard network analysis,

Numerical examples are presented for the symmetric

slab waveguide. For the general multillayer waveguicle, the

computational details differ, but the concepts involved

remain the same. The possibility of approximating con..

tinuous transitions by cascaded discrete steps, deserves

further attention.
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