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Field and Network Analysis of Interacting
Step Discontinuities in Planar
Dielectric Waveguides

TULLIO E. ROZZI, SENIOR MEMBER, IEEE, AND GERARD H. IN'T VELD

Abstract—Planar dielectric waveguides play an important role in elec-
trooptics and at millimeter frequencies. In many laser configurations and
integrated optical components, grooves are etched in the planar surface or
overlays are deposited on it. The step is an idealization of such a
discontinuity. Step discontinuities are seldom isolated. Mostly a cascade is
employed. The aim of this paper is to derive, from a rigorous field analysis,
an accurate finite network description for such cascades, either finite or
infinite, periodic or aperiodic, which takes account also of the continuous
spectrum, Numerical examples are given.

I. INTRODUCTION

Y HE ANALYSIS of discontinuities in open dielectric
’I waveguides is still in its infancy, and very few tech-
niques are known [1]. In this paper we study an important
class of discontinuities, namely, the cascade of steps in a
planar dielectric waveguide, such as shown in Fig. 1. This
is a basic configuration occurring in passive and active
components for integrated optics and optical communica-
tions, such as the grating coupler, the transformer /eche-
lon, and the distributed feedback laser. Corrugated dielec-
tric waveguides are also used for millimeter waves and as
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Fig. 1. Cascade of steps in a planar dielectric waveguide. (a) Cascade

of symmetric steps. (b) Cascade of asymmetric steps.

microwave antenna feeds. Various approximations have
been introduced for dealing with small discontinuities
between monomode guides (see, for instance, [1]-{4]). The
infinite periodic case has been treated extensively and
rigorously (see, for instance, [S] for a most comprehensive
list of references (287), as well as [6]). The problem of an
isolated, large step between two multimode waveguides
has been treated rigorously [7]. The general problem of
arbitrarily large, aperiodic interacting steps is unsolved up
to date. However, the optimum performance of various
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components is dependent, for instance, upon optimizing
the spacing between discontinuities and minimizing (or
maximizing) radiation at certain angles. It is, therefore,
worthwhile to develop an accurate analysis of general
validity. Fig. 1 illustrates the basic geometry. The struc-
ture is uniform in the y direction, not shown. Material
losses are not considered in this context, although this is

not an essential restriction.
An open dielectric waveguide allows, besides a finite

number of surface waves, a continuum of modes. The
modes within a finite range of the continuum are propa-
gating; the rest represent localized energy storage (reactive
modes). A surface wave incident from the left is scattered
by the step S, in all the surface modes allowed at either
side of S, as well as in the modes of the continuous
spectrum. After propagating up to S,, the surface waves
and the propagating part of the continuous spectrum are
again scattered by the second step, so that interference
between S, and S, takes place. The reactive part of the
continuous spectrum, being nonpropagating, is virtually
localized to the neighborhood of the discontinuity. The
problem involves two levels of complexity, depending on
whether we disregard or consider interaction via propagat-
ing continuous modes. In the former case, the field prob-
lem of a single step is first solved by means of the
approach of [7]. This analysis results in a multiport
network which describes how the junction is seen by the
surface waves: a port corresponds to each surface wave at
each side of the step. The cascade of interacting steps is
then described by a model consisting of discrete multi-
ports connected by transmission lines: one pair of ports
and one transmission line per surface wave. This is analo-
gous to the representation of interacting discontinuities in
closed waveguides [8]. A more complex situation arises for
cascaded discontinuities in weakly guiding structures, but
also for a large double-step discontinuity, where the prop-
agating continuous modes excited at one step “see” the
adjacent step, and it is impossible to ignore their interac-
tion. The picture of the step as a discrete multiport is no
longer adequate. A discontinuity is now intrinsically a
“generalized multiport” (GM), having a finite number of
discrete ports (the surface waves), plus a continuum of
ports (the continuous spectrum).

Although the GM retains many of the formal properties
of an ordinary multiport, it is no longer amenable to the
methods of finite network analysis and, as such, is no
longer useful. This difficulty is surmounted by giving up
the simple model of individual-mode propagation along
uncoupled, parallel transmission lines between successive
discontinuities.

Introducing a new representation of each length of
waveguide between successive discontinuities, including
the discontinuities at either end, reduces it to a discrete
2N-port network. All the N pairs of ports are mutually
coupled, but the above model is now amenable to
ordinary network analysis. The equivalence of the
network approach to a Ritz—Galerkin variational solution
will presently become apparent.
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Fig. 2. (a) Double-step discontinuity in a closed homogeneous wave-
guide. (b) Network representation.

In the following, we will consider slab waveguides ex-
cited by even TE waves. This particularization consider-
ably simplifies the modal spectrum with no loss of gener-
ality to the principles involved. The necessary modifica-
tions for the general multilayer waveguide and the TM
case are described elsewhere [9], [10].

II. INTEGRAL EQUATIONS FOR THE DOUBLE-STEP
DISCONTINUITY

Fig. 2(a) shows a double-step discontinuity in a closed
homogeneous waveguide. The field problem is trans-
formed into the network problem of Fig. 2(b). Each step is
represented by a multiport connected to the other by a
finite and generally small number of transmission lines,
one for each mode, either propagating or cutoff, which
causes nonnegligible interaction (which we define, as in
[8], an “accessible” mode). If enough modes are consid-
ered accessible, the field problem of a step can be treated
in isolation. Hence the step and the intervening length of
waveguide are the “building blocks” of the cascade.

Consider now the case of a double-step discontinuity in
the slab waveguide of Fig. 3(a) (groove) or of its counter-
part of Fig. 3(b) (rib). As long as interaction takes place
mainly via the surface waves, as in Fig. 3(b) with n,
considerably larger than n,, so that we can disregard
interaction via the continuous spectrum, the representa-
tion of Fig. 2(b) still applies. For Fig. 3(a), however, with
n,z=n,, considerable radiation takes place at the step, and
the familiar representation no longer holds. Propagating
continuous modes, while being accessible, cannot be mod-
eled by means of a finite number of transmission lines. In
order to proceed, we must first retreat one step and
reformulate the field problem.

Consider the situation where slabs 1 and 3 of Fig. 3(a)
are semi-infinite. The relationship between the transverse
(y-directed) electric field £ and the transverse (x-di-
rected) magnetic field H at z=0" is [7]

E(x,0)= — fo “ 9, (6, x)[ — H(x',0)] dx’
= 21- [-H(x,0] (1)

where

7(0%)= 2 20+ [ “2o)olxo)n(x.0) do

)
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Fig. 3. Double-step discontinuity in a planar dielectric waveguide. (a)

Groove. (b) Rib.

is the Green’s impedance function of the semi-infinite slab
1. @, - @5 are the modal fields of the 7, surface waves
with characteristic impedances zg,- - - zo, ; @(x,p) repre-
senis a component of the continuum with characteristic
impedance zy(p). Similarly, at z= L, we have

E(x,L)=Z,-[ — H(x,L)] 3)

where
2]

L(xx)= X

n=1

@%uwuw+gfmmwmmumm¢x
@)

The various quantities occurring in (4) resemble those
occurring in (2). In particular, zy(p) is the same for both
slabs. If E is identified with an abstract “voltage” and
— H with an abstract “current,” then ZAI,2 are driving-
point impedance operators of the semi-infinite slabs 1,3.
We now need a link between the fields at z=0 and z=L,
which represents the effect of the finite length of slab
waveguide between the steps. Let ®,(x) (1<k < k) denote
the surface waves in region 2, having propagation con-
stants I', and characteristic impedances (TE modes)

Joky
I‘k

Zo= (Tx=JBy) (5)

and let p(x,p) denote a component of the continuous
spectrum with propagation constant I'(p) and characteris-
tic impeclance

. Jwp Wil
Z(p)= F(p()) = = 0 - for p<n,k,
nykg—p
)
= —j—p'—o———, for p >n,k,. (6)
p*— n3kg

o is the transverse wavenumber in the air region, so that
p*+ B%=:n2k2, (ky=w/c). When a magnetic wall is placed
at z=L (H(x,L)=0), the transverse electric field E(x,0)
excited by H(x,0) is

E(x,0)=Z,; [ - H(x,0)]

-/ dx’{ S Zo, coth (T L), (x)®,(x')
0 k=1
+ fo " dp Zy(p) coth (T(p) L)D(x, p)P(x', p)}

[ H(x,0)]. ()
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Fig. 4. Abstract network representation of the integral equations for
the double step.

This expression' is the operator form of the driving point
impedance of an open-circuit stub. Moreover, under the
same boundary conditions, we have

E(x,0)=—Z, [ - H(x,L)] (8)
where 212 is derived from (7) by replacing the coth
function by csch. When a magnetic wall is placed at z=0
and E(x,0) is set equal to zero, we have by symmetry

E(x,L)=~Z,;-[ - H(x,L)] ©)
and by reciprocity
E(x,L)=Z[ - H(x,0)]. (10)

The above equations (7)-(10) can be combined in a
“two-port” Green’s open-circuit impedance operator for
the length of waveguide 0<z <L:

E(x,0)\ _
E(x,L)
Continuity of the transverse fields at z=0, L yields two
coupled integral equations for H(x,0), H(x, L) which com-
pletely describe the problem.
Their abstract network representation is shown in Fig.
4, where the positive current convention is that from left

to right. From this figure, the relationships between the
field incident from the left at z=0

() o

i
1
'
]
v
)
'
'

y

E\(x,0)= X a,9,(x) (12a)
n=1
and that incident from the right at z =L
Exx,L)= 2 az 4, ¥,(x) (12b)
n=1

and the total fields at z=0, L are found to be
E(x,0)=2E(x,0)— Z,-[ — H(x,0)] (13a)
E(x,L)=2E)(x,L)+ Zy[ ~H(x,L)].  (13b)

Hence, from (11) and (13), the integral equations describ-

'The integrand has no branch line singularities but only poles for
B(p)-L=mm=. These are avoided by means of small indentations on the
upper half-plane (“small” losses). One such pole contributes a term

€(@po/ Pm)(7/ LYP(x,p,,)P(x', p,)

(0 1+ 6msom L= VG 17 )

to the Green’s function.
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ing the scattering properties of the double step are

( Ey(x,0) )_1 (:g((f?))

—E,(x,L)

(14)
For the double step in a closed homogeneous waveguide,
decoupling of the integral equations takes place essentially
by replacing the off-diagonal terms of the matrix in (14)
by independent sources. This approach is feasible in as
much as interaction between adjacent steps can be de-
scribed effectively by means of a few parallel uncoupled
discrete transmission lines. Hence, the network repre-
sentation of Fig. 2(b) results.

In the present situation, this is no longer possible due to
the propagating continuous modes. We must consider,
therefore, the whole length of waveguide between two
successive steps, including the steps, as the building block
of the cascade.

III. TRANSFORMER EMBEDDING AND FINITE

NETWORK REPRESENTATION

The abstract representation of the double step given in
Fig. 4 is not an actual equivalent network, amenable to
ordinary network analysis, but it is our aim to derive such
a network. The integral equation for the single step can be
reduced to a finite matrix equation by means of a discrete
sequence of functions (not necessarily orthonormal, but
belonging to a complete set) truncated after N terms. This
amounts in fact to the Ritz—Galerkin variational ap-
proach [11].

For the symmetric TE case, for instance, an appropriate
orthonormal “basis” of functions for representing the slab
modes is given by

{Bm(x)=\/i70 exp(—x/ZxO)Lm_l(;C)iO), m=1-~N}

(15)

where L denotes the Laguerre polynomial and x, is a scale
factor chosen so as to optimize the convergence of the
representation for any finite truncation N [7]. Introducing
such a sequence at z=0, we expand the slab modes in
region 1 as?

()= 3 Pn() (162)
Wp)= 3 Poyfl) (160)

where
o= > = [ () (%) dx (172)

2As N—oo, (16a) converges “in the mean,” and (16b) only in a
distributional sense. This relates to the delta function normalization of
the continuous modes and to the finiteness of energy, which is defined
under an integral sign. As apparent from (18), classical convergence of
(16b) is not required.
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Fig. 5. Finite network representation of the double step.

P =P, (0)=<Es9,> = [ L, (x)p(x,p) dx. (17b)
0
Using (15) as a basis, (2) becomes®

iy
Zl= 2 ZOnPnPr:

n=1

+ [7do 2POP() (1)
0

where P, is the vector with components given by (17a).
We can combine the latter so as to define a rectangular
(n; X N) transformer matrix

T’-—(P” Py, )
a"\p e P )
1n, N,n,

The finite sum in (18) can be written as

(19)

Ty 200 T, (20)

where zo,=diag (zo;, * *,2q;), Which is the familiar ex-
pression of a transformer embedding of an impedance
matrix (see Fig. 5). In analogous fashion, we introduce the
N X1 transformer

T=(Plp...PNp)t (21)

p
and write (18) as

Zl=(T;'Tp)'(z‘0d z.op)'(;d)

o

(22)

where the dot product must be understood in the sense
indicated in (18), partly as an ordinary matrix multiplica-
tion, partly as an integral over the product of scalar
functions.

The resulting N X N-matrix (18) can be interpreted as
the impedance of an ordinary N-port, which approximates
the field problem in the Ritz—Galerkin sense and is amen-
able to ordinary network analysis. The projections of the
surface-wave modes of region 2 onto the basis (15) are
given by

Amk=<Bm‘(Dk>

where 0<k <k, while those of the modes of the con-
tinuum are given by

Ay =L, @, (23b)

introduce at z=L another finite

(23a)

Moreover, let us

3The superscript ¢ denotes transposition.
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sequence, similar to (15),

- 1 x
En(x)=—exp (—x/2%) L (—); =1
| Ea= = e (= /29 1, )it
(29)
where X is a scale constant.
The projections of the modes of slabs 2 and 3 on the
latter basis are given by

/ka = <Em’ (I)k>
Zmp = <Em’ ¢P>
R, =L, 4,

R,,=<E,..v> (25)

which introduce two ideal transformers with ratio
matrices
T’=(P,- P PA, - -A,;AP) (26a)
T'=(4,---A; AR, R;R,). (26b)

Using (17), (23), (25), and (26), the integral equation (14)
for the double step becomes the matrix equation

E, I,
=Z 2
[2)-=(1) &
where from (12) and (16a), we have
ny
Elm= 2 aann (28&)
n=1
E2m = 2 aﬁl+ann' (28b)
n=1
I,,1, corresponds to — H(x,0), — H(x, L):
1{Z+Z —Z
= 5 1 t 11 12 ) (29)
—Zy, Z,+Z,
where Z, is defined in (18) and
Z,=T
-diag (Zy, coth T'\L,- - -, Z, coth I', L, Zy, coth T,L)- T
(30)

the dot product being understood in the sense of (18). An
analogous definition holds for Z,, with T replaced by T.
Moreover, we have

Z,=T'
~diag (Zy; esch T\ L, -+, Zy, csch T L, Zy, csch T, L) T.
@3

The network interpretation of (29) is shown in Fig. 5.

The normalized scattering matrix of the double step, as
seen by the surface waves incident at either side, can be
derived from the above figure. By definition, its element
S_',d is given by the voltage wave appearing at port k for
unit incidence at port /. This expression is, in fact, form-
ally the same as for the single step [7]
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Fig. 6. (a) Cascade of multiple steps. (b) [ts finite network repre-

sentation.
Ser= 8~ 0coNzonzor ULZ, ', (32)
where
Su=1ifk=1  =0if k=l
1 <k,I<7,+7,

o, =%, as k2m,

B Zok k<m,
o k>,
U P, T k<a,

S k>a,.

IV. CASCADE OF STEP DISCONTINUITIES

Having obtained the building blocks, i.e., the double-
step discontinuity, we are now in a position to consider
the cascade of steps such as shown in Fig. 6(a).

Within each uniform section, E(x,z) and — H(x,z) can
be expressed at any point z as combinations of the surface
waves and of the continuous spectrum of the section in
question. The total transverse fields at z, and z,,, are

related by
E(x,2) -29\ [ —H(xz)
Az(') —H(x,z,,,)
(33)

—‘E(X,Zl+1)) ( —ZAl(é)
where Z{), Z$, etc., are the two-port impedance opera-
tors for each section, as given by (11).
Introducing the ideal transformers 7, at z,, we obtain

the discrete equivalent network of Fig. 6(b).
Continuity of the transverse fields

E(x.z)=E(x.2")

H(x,z7)=H(x,z") (34
is translated into continuity of voltages and currents at the
reference plane S,. It should be emphasized that interac-
tion via the propagating continuous spectrum between
nonadjacent discontinuities is built into the model, as
E(x,z,) represents the total transverse field at z,. The
analysis of the cascade is most conveniently carried out
by cascade multiplication of the transfer matrices of the
individual discrete networks N;---N,. The transfer
matrix relates voltages and currents at the left-hand-side
ports to those at the right-hand side. If we denote by

( le ‘ZIZ) (35)
_Zl’2 ZZ2
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Fig. 7. (a) Unit cell of the periodic cascade. (b) Its finite network

representation.

the 2 N-impedance matrix of a discrete 2N-port (with the
sign convention of Fig. 6(b)), its transfer matrix is given

The inverse transformation, from M to Z, is easily re-
covered. After the overall impedance matrix of the
cascade has been obtained by network analysis, its scatter-
ing matrix, as seen by the 7, surface waves of the semi-in-
finite guide to the left of S| and 7, surface waves to the
right of §;, is given by (32). An important particular case
arises when the cascade is infinite and periodic.

The unit cell of the periodic structure is shown in Fig.
7(a) and its finite, discrete equivalent network in Fig. 7(b).
The relationship between voltages and currents at 4 and

A’ is
(7)=eoe( 7). &
The periodicity condition requires, however,
Viy_ - I‘L( V)
( r ) “ (38)

where L is the length of the period and T is the propaga-

tion constant on the periodic structure. From (37) and

(38) follows the (approximate) eigenvalue equation for the
periodic structure:

M1 —1( V)= —I"L( V)‘

; M, I € I (39)

Reciprocity implies that if T' is an eigenvalue, so is —T.
The transverse electric and magnetic fields, obtained from
the corresponding independent eigenvectors, are

E¥(x)= % V7 E.(x) (40a)
n=1

N
—H?(x)= X I7£,(x)
n—1
If so required, the latter are easily expressed in terms of
the spectrum of either waveguide of Fig. 7(a).

(p=1---N). (40b)

VIL

The theory will not be illustrated by means of a few
examples. These refer to slab structures excited by even
TE waves. The required expressions of the mode func-

ExXAMPLES
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tions, the Green’s functions, and their discrete representa-
tion are given in [7]. Mathematical details on the com-
putation of the integrals over the continuum as well as on
the convergence of the discrete representation are also
provided. Similar information for the TM case can be
found in [9] and for the general multilayer case in [10].

A. Symmetric Double Step

The first example of Fig. 8 is a rib of AlGaAs in air
excited by a surface wave incident from the left. For the
given values of the parameters, only one surface wave can
propagate in each section. The computation was carried
out as described in Section IV using the discrete basis
(15), truncated after three terms (N =3). Inclusion of
additional terms produced only a very slight change in the
characteristics.

In the figure the reflection coefficient I’ and transmis-
sion coefficient T, are plotted versus the relative spacing
1/d. Radiation losses for this configuration are virtually
negligible, and the rib behaves almost like a resonator in
closed waveguide. The above behavior contrasts with that
of the second case of Fig. 8, namely an air gap between
two collinear semi-infinite slabs. This is the degenerate
case of the rib for D=0. The surface wave in the mid-re-
gion disappears, while the continuous spectrum of the slab
becomes that of an homogeneous air region.

Radiation losses here are obviously high, and there is a
fair amount of coupling between the slabs, which de-
creases only slowly with increasing spacing. The reflection
coefficient, on the other hand, approaches that of a single
semi-infinite slab radiating in air, as is to be expected.

B. The Quarter-Wave Transformer

Fig. 9 shows the counterpart of a classical configuration
in microwave techniques, namely, a ten-to-one quarter-
wave transformer. For the given values of the parameters,
all three sections are monomode. Furthermore, the electri-
cal length of the midsection is a quarter-wavelength at a
point within the region of interest, and its thickness is
chosen so that the impedance matching condition is satis-
fied. An obvious and simple approximation for this struc-
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Fig. 9. The (not so) ideal quarter-wave transformer.

TABLE1
CONVERGENCE OF THE PROPAGATION CONSTANT OF THE INFINITE
PERIODIC STRUCTURE GF FIG. 7

nk,ds1;  D/d=2; 1, /d=1,/a21; (ni-n§)5kod=2;
B, = 2,147 By 3 1.330 g 2.060
b = 1.985

N Re(ﬂl) Im(Bl)

1 2.185 0

3 2.242 -0.126

l 2.169 - 0.174

6 2.151 - 0.155

7 2.129 -0.173

2 2,134 ~0.170

ture is obtained by treating it as a cascade of lossless
transmission lines, disregarding mode conversion at the
steps. Transmission and reflection coefficients in this ap-
proximation (T,pp, and T, are contrasted in the
figure with the result of a fourth-order variational solu-
tion, carried out as described in Section 1V, taking
account of losses and of inieraction. The behavior of the
reflection coefficient from the left, I'j, is due to the fact
that the surface wave is less well guided in the thin slab.
This effect is felt particularly at short spacings. The effect
of losses on the reflection minima and the transmission
coefficient is also evident.

C. Infinite Periodic Structure

The unit cell of an infinite periodic structure is shown
in Fig. 7(a). Table [ shows the convergence of the propa-
gation constant B, of the first mode of such a periodic
structure with increasing order of the discrete representa-
tion.
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For the sake of comparison, the propagation constants
B,, B, of the two surface waves of the thicker slab section
and b of the thinner section are also given.

From simple transmission-line considerations, an esti-
mate of the propagation constant, strictly speaking only
valid for monomode slab sections, is

1 _ 1(B b\ . .
B cos !l cos BI, cos bl,— —2—(? + E) sin Bl, sin b, |.
(41)

Hence, the similarity between Re( ;) and B, is hardly
surprising. Owing to the multimode character of thicker
slabs, however, the general behavior of the eigenvalues is
rather complicated.

VIIL

In conclusion, a general analysis technique has been
outlined for cascaded step discontinuities in dielectric
waveguides. The key point is transforming the field prob-
lem, which involves a continuous as well as a discrete
spectrum, into a finite discrete network problem by means
of an appropriate discrete representation. The discrete
network is then amenable to standard network analysis.

Numerical examples are presented for the symmetric
slab waveguide. For the general multilayer waveguide, the
computational details differ, but the concepts involved
remain the same. The possibility of approximating con-
tinuous transitions by cascaded discrete steps deserves
further attention.

CONCLUSIONS
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